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Starting mechanics of an evanescent wave field 

By D. C. HILL 
Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ 

(Received 4 June 1985) 

The linear field induced by the sudden starting of a wave on an infinite plane surface 
is found exactly. An acoustic wavefront, on which the pressure remains constant and 
finite, moves outwards from the surface at the sound speed c. Behind this front the 
pressure field consists of two distinct components. The first is recognizable as the field 
due to steady motion over a wavy wall, while the second is an acoustic transient which 
propagates through the fluid to accelerate it into its steady asymptotic state. We find 
that whenever the surface phase speed is subsonic, there is an equipartition of the 
energy between the steady evanescent field attached to the surface and the 
outward-travelling sound. If the surface has sonic phase speed then the pressure on 
the surface grows like ti, and becomes unbounded. For subsonic waves the final 
momentum of the fluid parallel to the surface is shown to be equal to the total energy 
radiated divided by the surface phase speed. In  the asymptotic state the ratio of 
momentum in the far field to that in the near field is $"(l -$", where m is the 
ratio of the surface phase speed to the sound speed. The transient field on the surface 
can be identified as consisting of two travelling sound waves. One travels in the same 
direction as the surface wave, and the other in the opposite direction. They have 
amplitudes which are proportional to (1 - m)-l and (1 + m)-l respectively, and decay 
in time as t-4. Their wavelength parallel to the surface is, of course, the same as that 
of the surface wave that induced them. We show that when the surface wave is very 
subsonic, the evanescent field is established very slowly, settling down only after the 
surface wave has travelled about m-' wavelengths. 

1. Introduction 
This paper considers the problem of suddenly establishing surface motions from 

rest, and the effects of compressibility on the consequent production of sound and 
energy. A number of related model problems have already been studied. Ffowcs 
Williams & Lovely (1977) considered a sphere that is suddenly brought into steady 
translation in a compressible inviscid fluid ; where there is an equipartition between 
the energy in the near field and that radiated outwards as sound. Their calculation 
was based on a more general result of G. I. Taylor (1942). Longhorn (1951) also 
examined this problem, dealing more with the aspects of drag than energy. A similar 
problem has been tackled by Junger (1966) who showed that when a radial velocity 
step is given to a sphere there is again an equipartition between the energies of the 
near and far fields. He also showed that the same was true for a velocity step applied 
to a baffled piston. The equipartition of energy is clearly a fundamental result ; cf. 
also Holmes (1975). 

A similar problem is considered here. A harmonic wave is established suddenly on 
an infinite plane surface, and an exact solution is found for the induced linear pressure 
field. 
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When the phase speed of the surface wave is subsonic, a surface-attached 
evanescent pressure field is eventually established. This field is initially swamped by 
the starting transients which persist for a large number of wave periods. At the 
instant when the surface is activated, the fluid moves normally to  the surface, with 
the pressure and surface velocity exactly in phase. The pressure eventually settles 
into the evanescent field, where the phase difference between the pressure and surface 
velocity is in. As the surface phase speed approaches the sound speed (from below), 
the time taken to  settle down into the evanescent form increases, with the effect that 
more energy is radiated. The amount of energy radiated as sound is exactly the same 
as that in the evanescent field to which the flow eventually settles. When the surface 
phase speed is supersonic, the transient field appears to be of much less significance. 

There is a transient form drag on the surface. We show that the total momentum 
imparted to the fluid equals the total energy divided by the surface phase speed. The 
evanescent field contains the fraction (1  -+2 ) of this total fluid momentum, m being 
the ‘phase’ Mach number; the sound field contains the remaining fraction !p?. 

2. The field of an impulsively started surface wave 

given by 
The outgoing pressure field produced by the motion of an infinite plane surface is 

where v ,  is the normal velocity and [ ] denotes retarded time t - r / c ,  r being the 
distance from source point x’ to  field point x. The equation is normally derived using 
a Green function and can only be confidently applied when the source region is finite. 
Since we wish to deal with an infinite region, the validity of applying (2.1) is verified 
in the Appendix. 

The prescribed normal velocity in our problem is 

v,  = wH(t) sin (wt- k x ’ ) ,  (2.2) 

where H(t)  is Heaviside’s function, and the y-axis is normal to the surface. Then 

= wwH(t) cos (wt - kx’ ) + v&(t) sin (wt - kx’ ), (2.3) at 
so that 

p ( x , t )  = w t - k x ’ - E ) } y .  C 

(2.4) 

Centring a set of polar coordinates on the surface directly below the point of 
observation and integrating over the angular variable gives 

w 
C C 

p ( x ,  t )  = pow jm { w H ( t -  (52 +y2)’) cos (wt - k x - -  (s2 + yz$) JO(ks )  
0 

5 ds 
sin (wt - k x - -  C (s2 + yl?) J,( k s ) }  (s2 + y2 (2.5) 

w + 6 ( t  -(” +y2)’) C 
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p(x,t) = p0vwH J0(k(q2-y2) i )  dv 
C 

1.e. 

sinkxJofE(c2t2--y2)i) ( y  > 0), (2.6) 

where r ]  = (s2 + y2 )a. 

over the ranges [y, a), and [ct, a), p may be written as 
By expressing the integral over the range [ y, ct] as the difference between integrals 

(2.7) 

where A ( x , t )  = p o v w l m  
Y 

i.e. 

(2.9) and 4x9 t )  = Po wc (rn2 - I)+ sin (wt - ks- ky(m2 - l)i), when m > I .  

Of course, this is the ‘steady’ field induced by a moving wavy wall. Added to this 
is the transient pressure 

m 

T(x,t) = -povc sinkzJo(k(c2t2-y2)i) 

W W 

-po vw cos (wt - kx-- r ] )  Jo(k(q2 - y2 )i) dq. (2.10) 
ct C 

It can be seen that for large values of t, the transient T(s,  y, t )  is very small, except 
near y = c t ;  it is actually the constant -povc sin kx at that sonic wavefront, a value 
that could be deduced from ray theory, which must be applicable to the discontinuous 
element of the field. 

3. The sound field 

sound speed. The sound field is 
First, consider the case rn < 1, i.e. when the surface phase speed is less than the 

W 

- T(x,t) = -povcm cos (wt -kx -mg)Jo( (C-k2y2)~)  d[ 

- p o w  sinkxJo(k(c2t2-y2)i). (3.1) 

An integration by parts is possible by expressing the Bessel function as a derivative. 
Then 

[kc.! 

cos (wt - kx - mg) Jo( (c - k2y2 )i) dt; 
Jk:t 
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The integral can now be written aa 

which can again be integrated by parts so that 

Since m c 1, the terms generated by successive partial integrations are of smaller and 
smaller order. This allows an exact expression for (3.4) to be written as 

where ((l/g-)(a/a[))[,wt f(3) means that the operation (l/c)(a/ac) should be repeated 
r times onf(6) and the function obtained evaluated at s = wt. 

The transient sound field is 

It is possible to eliminate the need to take multiple derivatives by noting that 

- ($)t cos (wt-kx)  (wt)-'+tJ-,+t (wt ) ,  (3.7) 
see Gradshteyn & Ryzhik (1980, p. 966, $8.463). Hence 

03 

-Po vc cos (wt- kx) ($wt)t Z ( - 1)rm' 
r-0 

In a similar manner a solution can be found when m > 1,  i.e. when the surface 
wave speed exceeds the sound speed, except that it involves integrating rather 
than differentiating the cosine term : 

sin kx 
cos (w t -kx -ms)Jo( (S -k2y2) t )  dc = --Jo(k(~2t2-~2)~) 

Jk:t m 

1 *  
-- sin(ot-kx-m()F(g) dc, (3.9) 

Jkct 

where 
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FIQURE 1 .  The root-mean-squared pressure field as a function of distance y from the surfme, for 
a sequence of times t ,  at a wave speed 0.1~. The dotted line represents a steady evanescent wave. 
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T ( x ,  t )  = po vc sin (wt- kx-me) F(3) dc. 
kct 

(3.10) 

Integrating by parts again gives 

i3F 
ac cos(wt-kx-mc)-ddg. (3.11) T(x ,  t )  = -povc- 

Continuing this process gives terms of higher and higher order in l / m .  This allows 
the supersonic form of T ( x ,  t )  to be written as 

Figures 1-3 show how the root-mean-squared pressure field progresses with time for 
various Mach numbers rn less than one, the mean being taken over the x variable. 
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FIGURE 2. The root-mean-squared pressure field as a function of distance y from the surface, for 
a sequence of times t ,  at a wave speed 0 . 3 ~ .  The dotted line represents a steady evanescent wave. 

These curves illustrate clearly how the starting transient moves through space and 
energizes the evanescent field. 

When m is very much less than one, the only important term of (3.8) is the zeroth- 
order term, and so the pressure on the surface is approximately 

p ( z ,  0, t )  x po vcm cos (wt - k z )  - po vc sin kx J,( kct). (3.13) 

By comparing the magnitude of these two terms one can estimate the time taken for 
the transient field to decay to about half the magnitude of the evanescent field. The 
asymptotic magnitude of the Bessel function is (Zlnkct):, so that the 'settling down' 
time T is determined from the equality 

4 2  $o vcm = po vc - 
(n kc7)f ' 

(3.14) 

which gives WT = 8/xm. (3.15) 

The field a t  this time is shown in figures 1 and 2. This condition essentially states 
that  the evanescent field is established on the surface carrying a low-'phase' 
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FIQURE 3. The root-mean-squared pressure field as a function of distance y from the surface, for 
a sequence of times t ,  at a wave speed 0 . 8 ~ .  The dotted line represents a steady evanescent wave. 

Mach-number wave in the time taken by the surface wave to travel 4/n2 acoustic 
wavelengths, (3.15) being equal to 

w 4  
- r  = - A ,  
k n2 

where 
2nc A=----. 

w 
(3.16) 

The separation of the fields into steady evanescent and outgoing sound is clear. 
It should be noted how much larger the amplitude of the sound field is when compared 
with the evanescent field near the surface when m is small (see figure l ) ,  highlighting 
how a relatively large disturbance has been caused by the impulsive start. Another 
striking feature is the crowding of the wavecrests behind the wavefront. As time 
progresses, both the amplitude and the spacing between these crests decrease. 

Figures 4 and 5 show how the field behaves when m > 1. The transient field is not 
then of great significance and the wavefront travels only a few surface wavelengths 
2n/k before the transient decays. As m is increased, the field settles more rapidly to 
the steady asymptotic plane wave. 
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FIGURE 4. The root-mean-squared pressure field as a function of distance y from the surface, for 

a sequence of times t ,  at a wave speed 3c. The dotted line represents a steady plane wave. 

4. Sonic surface waves 
No bounded solution exists to the equations describing flow over a wavy wall 

moving at  the speed of sound. A surface that is started from rest will induce a growing 
field whose strength can be calculated from the foregoing equations. 

For m = 1 

p(&O,t)  = povcH(t) cos(wt-kx-~)Jo(5) dC-p,vcH(t) sin kxJ,(kct). (4.1) s," 
It can be seen by direct differentiation that 

a 
a5 cos (wt - kx - 5) J, ( [ )  = - [{ J,(g) cos (wt - Ex - 5) - J1([) sin (wt - kz - t;)}. (4.2) 

Hence, it can be shown that 

p(z,O,t) = p,vcH(t)wt sinkxJ,(wt)+p,vcH(t) wt coskzJ,(wt)-p,vcH(t) sinkxJ,(wt), 
(4.3) 
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FIQURE 5. The root-mean-squared pressure field aa a function of distance y from the surface, for 
a sequence of times t ,  at a wave speed 1Oc. The dotted line represents a steady plane wave. 

i.e. p(z,O,t) - povc - cos(k(z-ct)+~7r). 
k c o  r 3  (4.4) 

There is a surface pressure wave of strength proportional to d travelling with the 
displacement wave. The root-mean-squared value of this pressure field is shown in 
figure 6 as a function of time. 

5. Energy produced by surface motion 
The energetics of the motion depend crucially upon whether the surface phase speed 

is subsonic or supersonic. Just after the boundary motion is established the fluid 
elements adjacent to the surface move in an essentially one-dimensional sound wave 
where the pressure and velocity are in phase. The rate at which energy is extracted 
from unit area of surface is I = pun. If the surface phase speed is subsonic, energy 
is drawn from the surface until the evanescent field is established, during which time 
the phase difference between the surface pressure and the velocity shifts from 0 to 
in. Then there is no further energy transfer. 
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FIGURE 0. The root-mean-squared pressure field as a function of distance y from the surface, 
for a sequence of times t ,  at a wave speed c. 

In order to evaluate the work done by the surface on the fluid, the surface intensity 
is averaged over x and integrated over time. The surface pressure is 

p ( x ,  0, t )  = H ( t )  A(x,  0, t )  - H ( t )  po vc sin kx Jo( kct) 

- H ( t ) p o v w J m  cos(wl-kx--q " >  C Jo(kq) dq, (5.1) 

and the surface velocity for t > 0 is 

v, = v sin(wt-kx). (5.2) 

The surface intensity I is the product of (5.1) and (5.2). A(z,O,t)  makes no 
contribution to the energy flow of a subsonic wave ; on the other hand there is a steady 
flux of energy in the supersonic case. The transient pressure is the only energy-bearing 
element in the subsonic case. The mean (over x) intensity I is consequently 

I =  +povu2c sinmcJo(C) dg ( m  = z). (5.3) 



Starting mechanics of an evanescent wave field 

By writing 

329 

the total energy E extracted from the surface by the transient can be expressed as 

Changing the order of integration in the double integral gives 

lpovz 1 
E = - -  ifm < 1, 

2 k (1-m2)t’ 

= O  ifm > 1.j 

When m < 1, the energy per unit area of the evanescent field can easily be shown to 

be iE. 
Since a total of E is radiated from the surface, the other i E  must be in the transient 
part of the field, and is radiated as sound to infinity. 

This equipartition becomes obvious when the ‘ complementary ’ problem is con- 
sidered. If a velocity v, = vH( - t )  sin (wt - kz) is prescribed, then clearly the pressure 
field for t < 0 will be A(x,  t ) .  For t > 0, there is no surface motion and the field decays 
to zero. Let this decaying field be called T’(x,  t ) .  No energy can be extracted by the 
motionless surface, so the energy per unit area in T’ must be that in the evanescent 
field, i.e. i E .  This radiates outwards as sound. Now consider the problem where 
v,, = vH( - t )  sin (wt-kz) +vH(t)  sin (a t -kz ) .  This produces the pressure field A(x,  t)  
for all time. When the solution to the ‘complementary’ problem is added to the 
solution (A(x ,  t) + T ( x ,  t ) )  H ( t -  y/c), the sum must total A(x,  t ) .  Clearly then, as t+  00, 

T’(x,  t ) + - T ( x ,  t ) .  The energy in these two fields must be identical, i.e. iE  as t +  00. 

The energy needed to create the evanescent field is supplied by the transient, half 
of the energy going to form the steady field, and the other half radiating out as sound. 
If m > 1, the energy is all supplied by the steady part of the field. 

6. The distribution of momentum 
For a physical surface displaced by E(z,t) from y = 0, there is a surface stress 

-pat /ax ,  which causes a change in the z-momentum of the fluid. This momentum 
is shared between the evanescent field and the sound. 

From expression (2.2) for v,,, it  can be seen that the effective surface displacement 
is 

[(z, t )  = -” cos (wt-kz) (t > 0). (6.1) 
0 

The momentum-conservation law in integral form for a moving surface s(t) enclosing 
V(t) is 

the normal direction being taken as inwards. s(t) is chosen to be a box of width one 
wavelength 2n/k, with its top positioned at y = h, and its bottom lying along the 
moving surface at  y = E(z, t ) ?  as shown on figure 7. 
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FIGURE 7. Diagram of control surface S(t) .  

For this sytem, which is periodic in x, the integrals over 8,(t) and #,(t) as shown will 
cancel. The x-component of (6.2) is, consequently, 

a 2n/k h 

J;" dx( -pg+pVxV,) Y - m ,  t) -Jo2n'k dX(pVzVy)y,h = Jo dxJc(x,t) dyFt@z)- 
(6.3) 

With the overbar signifying the average over x as in $5, (6.3) is, to second order in 

r h  n 
velocity v, - 

But 

to second order, so that (6.4) can be rewritten as 
- 

-P z- ( P O  vx vy )y-h = - a I" PVX dY. 
at E(2.t) 

Here -p(aLJax) is the mean x-wise force exerted on the fluid by the surface, (m)u"v)r-n is the rate at  which x-momentum is convected into the far field. 
right-hand side of (6.6) is the rate of change of x-momentum in the near field. 

Integrating (6.6) over time from t = 0 to a, and letting h + a  gives 

- JOm 3 dt - P,,, = Pnear, ax 

(6.6) 

and 
The 

where ear is the mean x-momentum in the sound field, and P,,,, is the x-momentum 
in the final state of the near field, i.e. that of an evanescent wave. Since t > 0, 
aE/ax = - (k /w) (ac /a t ) ,  so that the total impulse given to the fluid by the surface per 
unit area is 

where E is defined by (5.6) m < 1 .  It is not difficult to show that 

for an evanescent wave; then from (6.7) and (6.8) 
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FIGURE 8. The root-mean-squared pressure on the surface as a function of time, for a wave 
speed of 0.1~. The dotted line represents the asymptotic form (equation (7.4)). 

7. A good approximation for the surface pressure 
The exact expression for the transient surface pressure is given in (3.1) with y = 0. 

The following results are easily derived by partial integration, (Levine 1980), for 
large a > 0: 

JamJo(5) cosb5d5 = 1-b2 -J,(a) cosba+bJ,(a) sinba+O 

jacaJo([) sinb5d5 = 1-b2 -Jl(a) sinba-bJ,(a) cosba+O 

Hence, for large time 

cos(wt-kz-my)J,(~) dy = 
1 -m2 

(7.3) 

When this result is substitute dinto the equation for T(x, 0, t )  a compact approximation 
is found: 

{J,(kct) sin kz- -d , (kc t )  coskz). (7.4) 
1 

1 -m2 
T(x ,  0 ,  t) x -/I, WC- 

But J,(kct) tTm ($J cos (kct- in) ,  J,(kct)  - (&- sin (kct- in) ,  (7.5) 
t+w 
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so that 

sin ( k ( z -  ct)  + in) 1 
s i n ( k ( x + c t ) - $ ) + G  

(7.6) 

The surface pressure forms two waves travelling in opposite directions a t  speed c .  The 
wave that travels in the same direction as the surface displacement wave is always 
larger in amplitude, being proportional to ( 1  -m)-l t-4, while the wave travelling in 
the opposite direction has an amplitude proportional to (1 + m)-l t3. 

Figure 8 shows how the root-mean-squared pressure behaves on the surface as a 
function of time. The extreme closeness of the asymptotic form (7.4) can clearly be 
seen. As m is increased the approximation becomes less valid at  small times because 
l l k c t  then becomes large. 

8. Conclusion 

induces in a fluid a pressure field 
An infinite plane surface with a prescribed normal velocity wH(t) sin (wt-  kx)  

p ( z , y , t )  = H t-- A ( x , y , t ) + H  t-- T(z,y,t) ( y  > 0) .  (8.1) ( 3 ( %) 
A ( x ,  y, t )  is an evanescent wave if w/kc  < 1 ,  but a plane outgoing sound wave if 
o / k c  > 1 ,  as defined in (2.8) and (2.9) respectively. T(x, y ,  t )  is a ‘transient’, that dies 
away to zero as t + 00, except a t  the acoustic wavefront where it is constant in 
amplitude at  -po vc sin kx.  If w/kc  < 1 the transient is defined by (3.8) and carries 
the same amount of energy away as sound as is contained in the evanescent wave. 
If o / k c  > 1 then (3.12) defines T(x ,  y ,  t ) ,  in which case it is energetically insignificant. 

The equipartition of energy between near and far fields is in complete agreement 
with other impulsive-starting problems, further highlighting G .  I. Taylor’s funda- 
mental general principle. The total momentum of the fluid parallel to the surface, 
as it approaches its asymptotic state, is shared so that the near field contains 
( 1  - !p2 ) (k /w)  E,  and the sound field has @ 2 ( k / w )  E ,  where E is the total energy 
radiated by the surface. 

If the surface wave is driven at  the speed of sound then the pressure on the surface 
consists of a sound wave travelling with the surface wave and growing in time like 
t: (see (4.4)). 

Equation (7.6) gives an expression for the transient surface pressure for a large time 
after the wave has been started. There are two acoustic waves travelling across the 
surface. The forward-travelling wave is of greater amplitude than the backward- 
travelling wave. Though the structure of this transient field is quite easily appreciated 
from the results observed here, the intricacy of the wave, and its reluctance to ‘lie 
down’, as evident from figure 8, is an aspect that we did not expect. 

The author is greatly indebted to Professor J. E. Ffowcs Williams for many helpful 
discussions on the subject of this paper, and much encouragement. Discussions with 
Professor H. Levine and Dr G. Maidanik were also of great value. The support of an 
SERC studentship is gratefully acknowledged. 
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Appendix 
Let 

00 

vn(r, t )  = ljn (k, w )  ei(ot-k*r) dk dw,  J-, 
m 

p(r ,  y, t )  = J-, $(k, w )  ei(wt-k.r--y) dk dw, 

where r lies in the plane y = 0, and 

y is chosen in this way since p must satisfy the wave equation, with the requirement 
that the pressure field be bounded and that sound waves have an outward component 
of phase velocity in the positive-y direction. 

Applying the y-momentum equation at y = 0 relates $(k, w )  to 8,(k, w ) ,  so that 

Since this is the Fourier transform of a product it can be expressed as a convolution, 

where 

and r = (I rI2+y2):.  Equation (2.1) now follows by substituting (A 6) into (A 5 ) .  
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